Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Superkapasitor

Supercapacitor
Ilustrasi skematis superkapasitor[1]
Diagram yang menggambarkan hierarki dari superkapasitor

Superkapasitor (atau dalam bahasa Inggris: supercap, ultracapacitor or Goldcap[2]) adalah kapasitor yang memiliki nilai kapasitansi jauh melebihi kapasitor lain (namun dengan batas tegangan yang lebih rendah), dan dapat dianggap sebagai pertengahan antara kapasitor elektrolit (biasa) dan baterai isi ulang. Superkapasitor dapat menyimpan muatan per kubik 10 hingga 100 kali lebih banyak dari kapasitor elektrolit, bisa menerima dan menyalurkan muatan lebih cepat dari baterai, dan mempunyai toleransi terhadap siklus cas/pakai lebih baik dari baterai yang dapat dicas ulang.

Superkapasitor digunakan dalam aplikasi yang membutuhkan sumber energi yang memiliki siklus cas/pakai lebih cepat daripada sumber energi yang tahan lama: di dalam mobil, bus, kereta api, mesin derek dan tangga berjalan.[3] Superkapasitor yang lebih kecil digunakan untuk pemasok daya bagi memori akses acak statis (SRAM).

Tidak seperti kapasitor biasa yang menggunakan dielektrik padat, superkapasitor menggunakan kapasitansi elektrostatis lapis-ganda dan pseudo-kapasitansi elektrokimia, yang keduanya turut andil dalam total kapasitansi yang dimiliki superkapasitor, dengan beberapa perbedaan:

  • Kapasitor lapis-ganda elektrostatis (electrostatic double-layer capacitors/EDLCs) menggunakan karbon sebagai elektrode atau sejenis dengan jumlah kapasitansi elektrostatis lapis-ganda lebih besar dari jumlah pseudo-kapasitansi elektrokimia, menimbulkan pemisahan muatan lapis-ganda Helmholtz pada permukaan elektrode konduktif dan elektrolit. Jumlah pemisahan muatannya adalah beberapa ångström (0,3-0,8 nm), lebih kecil daripada kapasitor biasa.
  • Pseudo-kapasitor elektrokimia menggunakan metal oksida atau elektrode berbahan polimer konduktif dengan jumlah pseudo-kapasitansi elektrokimia lebih tinggi ditambah dengan kapasitansi lapis-ganda. Pseudo-kapasitansi dicapai melalui pemidahan elektron Faradais dengan redoks, interkalasi, dan penyerapan oleh permukaan elektrode.
  • Kapasitor hibrid, seperti kapasitor litium-ion, menggunakan elektrode dengan karakteristik berbeda: satu menonjolkan kapasitansi elektrostatis sementara yang lain lebih menonjolkan kapasitansi elektrokimia.

Elektrolit yang terkandung dalam superkapasitor membentuk hubungan konduksi ionis antara dua elektrode yang membedakan superkapasitor dari kapasitor elektrolit yang mana lapisan dielektrik merupakan keharusan, lalu yang disebut elektrolit (contoh: MnO2 atau polimer konduktif) sebenarnya adalah bagian dari elektrode kedua (katode, atau lebih tepat lagi elektrode positif). Superkapasitor dipolarisasi untuk elektrode asimetris, atau untuk elektrode simetris, dengan potensial yang dikenakan saat proses produksi.

  1. ^ Qi, Zhaoxiang; Koenig, Gary M. (July 2017). "Review Article: Flow battery systems with solid electroactive materials". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena (dalam bahasa Inggris). 35 (4): 040801. doi:10.1116/1.4983210. ISSN 2166-2746. 
  2. ^ Panasonic, Electric Double Layer Capacitor, Technical guide,1. Introduction,Panasonic Goldcaps Diarsipkan 2014-01-09 di Wayback Machine.
  3. ^ Tehrani, Z.; Thomas, D.J.; Korochkina, T.; Phillips, C.O.; Lupo, D.; Lehtimäki, S.; O'Mahony, J.; Gethin, D.T. (2017-01-01). "Large-area printed supercapacitor technology for low-cost domestic green energy storage". Energy (dalam bahasa Inggris). 118: 1313–1321. doi:10.1016/j.energy.2016.11.019. ISSN 0360-5442. 

Previous Page Next Page