Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Single-photon source

A single-photon source (also known as a single photon emitter)[1] is a light source that emits light as single particles or photons. Single-photon sources are distinct from coherent light sources (lasers) and thermal light sources such as incandescent light bulbs. The Heisenberg uncertainty principle dictates that a state with an exact number of photons of a single frequency cannot be created. However, Fock states (or number states) can be studied for a system where the electric field amplitude is distributed over a narrow bandwidth. In this context, a single-photon source gives rise to an effectively one-photon number state.

Photons from an ideal single-photon source exhibit quantum mechanical characteristics. These characteristics include photon antibunching, so that the time between two successive photons is never less than some minimum value. This behaviour is normally demonstrated by using a beam splitter to direct about half of the incident photons toward one avalanche photodiode, and half toward a second. Pulses from one detector are used to provide a ‘counter start’ signal, to a fast electronic timer, and the other, delayed by a known number of nanoseconds, is used to provide a ‘counter stop’ signal. By repeatedly measuring the times between ‘start’ and ‘stop’ signals, one can form a histogram of time delay between two photons and the coincidence count- if bunching is not occurring, and photons are indeed well spaced, a clear notch around zero delay is visible.

  1. ^ Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nature Photon 10, 631–641 (2016). https://doi.org/10.1038/nphoton.2016.186

Previous Page Next Page






Font d'un sol fotó Catalan Einzelphotonenquelle German Vieno fotono emiteris LT Нэг фотоны ялгаралт MN Джерело одиничних фотонів Ukrainian Yagona fotonli manba UZ

Responsive image

Responsive image