Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Indirect injection

Indirect injection in an internal combustion engine is fuel injection where fuel is not directly injected into the combustion chamber.

Gasoline engines equipped with indirect injection systems, wherein a fuel injector delivers the fuel at some point before the intake valve, have mostly fallen out of favor to direct injection. However, certain manufacturers such as Volkswagen, Toyota and Ford have developed a 'dual injection' system, combining direct injectors with port (indirect) injectors, combining the benefits of both types of fuel injection. Direct injection allows the fuel to be precisely metered into the combustion chamber under high pressure which can lead to greater power and fuel efficiency. The issue with direct injection is that it typically leads to greater amounts of particulate matter and with the fuel no longer contacting the intake valves, carbon can accumulate on the intake valves over time. Adding indirect injection keeps fuel spraying on the intake valves, reducing or eliminating the carbon accumulation on intake valves and in low load conditions, indirect injection allows for better fuel-air mixing. This system is mainly used in higher cost models due to the added expense and complexity.

Port injection refers to the spraying of the fuel onto the back of the intake valve, which speeds its evaporation.[1]

An indirect injection diesel engine delivers fuel into a chamber off the combustion chamber, either a prechamber or swirl chamber, where combustion begins and then spreads into the main combustion chamber. The prechamber is carefully designed to ensure adequate mixing of the atomized fuel with the compression-heated air.

  1. ^ Kerr, Jim. "Direct vs. port injection". The Chronicle Herald. Retrieved 28 June 2016.

Previous Page Next Page